ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

Κεφάλαιο 40:

Εκωετικη Συναρτηση

Απαντήσεις στις ερωτήσεις του τύπου "Σωστό-Λάθος"

1. i) Σ
ii) Λ
iii) Λ
iv) Λ
v) Σ
vi) Σ
vii) Λ
viii) Σ
ix) Σ

x) Λ

2. i) Λ ii) Λ iii) Λ iv) Σ v) Σ 3. i) Σ
ii) Σ
iii) Σ
iv) Σ
v) Σ

4. i) Σ
ii) Σ
iii) Λ
iv) Σ
v) Σ
vi) Λ

Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής

1. Γ	11. Δ	21. E	31. A
2. B	12. A	22. Δ	32. Г
3. Δ	13. Δ	23. Δ	33. E
4. Δ	14. α) Ε β) Ε	24. B	34. B
5. E	15. Δ	25. E	35. Δ
6. A	16. B	26. B	36. Г
7. B	17. E	27. Γ	37. Г
8. Г	18. B	28. A	38. B
9. A	19. B	29. E	
10. A	20. Γ	30. Δ	

Απαντήσεις στις ερωτήσεις διάταξης

1.
$$B < \Delta < A < E < \Gamma$$

2.
$$A < E < \Gamma < \Delta < B$$

3. a) av
$$x > 0$$
: $\Gamma > E > B > \Delta > A$

β) and
$$x = 0$$
: $A = B = \Gamma = \Delta = E$

$$\gamma$$
) $\alpha v x < 0$: $A > \Delta > B > E > \Gamma$

Απαντήσεις στις ερωτήσεις αντιστοίχισης

1.	C_1	C_2	C_3
	f_5	$\overline{\mathbf{f}_2}$	f_1

2.	\mathbf{C}_1	C_2	C_3
	\mathbf{f}_4	\mathbf{f}_1	f_3

Απαντήσεις στις ερωτήσεις συμπλήρωσης

1. C_1 C_2 C_3 C_4 $f_1(x) = 2^{-x}$ $f_2(x) = 2^x$ $f_3(x) = -2^{-x}$ $f_4(x) = -2^x$

Απαντήσεις στις ερωτήσεις ανάπτυξης

1. i)
$$x = -2$$
 ii) $x = -3$ iii) $x = -5$ iv) $x = 3$ v) $x = -4$

ii)
$$x = -3$$

iii)
$$x = -3$$

iv)
$$x = 3$$

$$v) x = -4$$

2. i)
$$x = 2 \dot{\eta} x = 3$$

2. i)
$$x = 2$$
 $\acute{\eta}$ $x = 3$ ii) $x = -3$ $\acute{\eta}$ $x = 3$ $\acute{\eta}$ $x = 2$ iii) $x = 1$ iv) $x = 1$ vi) $x = 2$

$$iii) x = 1$$

$$iv) x = 1$$

$$v) x = 1$$

$$vi) x = 2$$

3. i) Θέτουμε όπου
$$\sqrt{2^x} = y > 0$$
, οπότε $x = 0$ ή $x = 4$

ii) Θέτουμε όπου
$$2^x = y > 0$$
, οπότε $x = \frac{1}{2}$

iii) Θέτουμε όπου
$$3^x = y > 0$$
, οπότε $x = -1$ ή $x = 2$

iv)
$$x = 4$$

v)
$$x = \frac{3}{2}$$

4. i) Diakrénoume periptéseis: a) an
$$x^2$$
 - $5x+5=1$ tote $x=1$ ή $x=4$

b) an
$$x^2$$
 - $5x+5$ = - 1 kai $(x+2)$ ártios tóte x = 2

$$γ)$$
 αν $x + 2 = 0$ τότε $x = -2$

ii) Θέτουμε
$$e^x = y > 0$$
: $x = 0$ ή $x = 1$

5. i) Λύνουμε την εξίσωση: ημ
$$2x = -\frac{1}{2}$$
, οπότε $x = k\pi - \frac{\pi}{12}$ ή $x = k\pi + \frac{7\pi}{12}$

ii) Λύνουμε την εξίσωση: ημ
$$2x$$
 - συν $x=2$ (1 - $2\eta\mu^2\frac{x}{2}$), οπότε $x=2k\pi\pm\frac{\pi}{2}$

iii) Λύνουμε την εξίσωση: ημ
$$x+2$$
ημ x συν $x=$ ημ $3x$, οπότε $x=$ $k\pi$ ή $x=\frac{2}{3}$ $k\pi$

- **6.** i) Λύνουμε την ανίσωση: x^2 7x + 6 < 0, οπότε 1 < x < 6
 - ii) Lúnoume thn aniswsh: x^2 $2x > x + \frac{5}{2}$, opáte x < -1 ή x > 5
 - iii) Λύνουμε την ανίσωση: $5x x^2 1 > 3$, οπότε 1 < x < 4
 - iv) Θέτουμε όπου $2^x = y > 0$ και λύνουμε την ανίσωση y^2 6y + 8 < 0, οπότε 1 < x < 2
- 7. i) (x,y) = (1,1)
- ii) (x,y) = (3,5) $\acute{\eta}$ (2,6)
- iii) (x,y) = (5,-2)
- iv) (x,y) = (2,1)
- **8.** ii) **Υπόδειξη:** Παρατηρήστε ότι f(-x) = g(x)
- **9.** $f(x+y) = \frac{1}{2} (\alpha^{x+y} + \alpha^{-x-y})$

$$f(x) \cdot f(y) + g(x) \cdot g(y) = \frac{1}{4} (\alpha^{x} + \alpha^{-x}) (\alpha^{y} + \alpha^{-y}) + \frac{1}{4} (\alpha^{x} - \alpha^{-x}) (\alpha^{y} - \alpha^{-y}) = \frac{1}{4} (\alpha^{x+y} + \alpha^{x-y} + \alpha^{-x+y} + \alpha^{x-y} + \alpha^{x+y} - \alpha^{x-y} - \alpha^{-x+y} + \alpha^{-x-y}) =$$

$$\frac{1}{4} (2\alpha^{x+y} + 2\alpha^{-x-y}) = \frac{1}{2} (\alpha^{x+y} + \alpha^{-x-y}), \, \alpha\rho\alpha \, f(x+y) = f(x) \, f(y) + g(x) \, g(y)$$

- **10.** i) Πρέπει $\frac{1-\alpha}{\alpha-5} > 1$, οπότε $3 < \alpha < 5$
 - ii) Πρέπει $0 < 1 \frac{5}{\alpha} < 1$, οπότε $\alpha > 5$

- **11.** α) Πρέπει 1 $k^2 > 0$, οπότε 1 < k < 1
 - β) Πρέπει 1 $k^2 > 1$, που είναι αδύνατη
 - γ) Πρέπει $f(1) = \frac{1}{2}$, οπότε $k = \pm \frac{\sqrt{2}}{2}$
 - δ) Πρέπει f(2) = 1, οπότε k = 0
- **12.** α) Θ (0) = 40° C
 - β) Λύνουμε την εξίσωση Θ (t) = 36,5, άρα t = 3
 - γ) Θ (4) = 36,25° C
- 13. i) $\frac{f(x+1)}{f(x)} = \frac{f(x+2)}{f(x+1)} = \frac{f(x+7)}{f(x+6)} = \alpha$, ii) $\frac{f(x+3)}{f(x)} = \frac{f(x+6)}{f(x+3)} = \frac{f(x+16)}{f(x+13)} = \alpha^3$
 - iii) $\frac{f(x+\lambda)}{f(x)} = \frac{f(x+\beta+\lambda)}{f(x+\beta)} = \alpha^{\lambda}$, iv) $\eta C'$
- **14.** Ισχύει Q (0) = 5, Q (10) = 2,5, οπότε βρίσκουμε $e^{-k10} = \frac{1}{2}$, άρα Q (40) = 312,5gr
- **15.** α) Ισχύει ότι P(2) = 400 και P(4) = 3200, οπότε $k = \frac{3}{2}$
 - β) $P_0 = 50$
 - γ) Λύνουμε την P(t) = 100, οπότε t = 40 min

- **16.** α) f (0) = 2 \Leftrightarrow k = 2
 - β) f (1) = 4 $\Leftrightarrow \alpha = \frac{1}{2}$
 - γ) f (-1) = 8 $\Leftrightarrow \alpha$ = 4
 - δ) $f(0) = 4 \iff k = 4 \text{ Kal } f(1) = 8 \iff \alpha = 2$
 - ϵ) f (0) = 4 \Leftrightarrow k = 4 kai f (2) = 1 \Leftrightarrow $\alpha = \frac{1}{2}$
- **17.** i) Ισχύει ότι $2^{x_0} = 4 \iff x = 2$
 - ii) Ισχύει ότι $\left(\frac{1}{2}\right)^{x_0}=4 \iff x_0=-2$
 - iii) Ισχύει $e^{x_0} = \frac{1}{e} \iff x_0 = -1$
 - iv) Ισχύει $\left(\frac{1}{e}\right)^{x_0} = e^2 \iff x_0 = -2$